Structure of Incoherent Operations

Swapan Rana

ICFO-Institut de Ciencies Fotoniques
The Barcelona Institute of Science and Technology
08860 Castelldefels (Barcelona)
Spain

January 30, 2018

Collaborators: Alexander Streltsov, Paul Boes, and Jens Eisert

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authore Reterees Search Press About at

Structure of the Resource Theory of Quantum Coherence

Alexander Streltsov, Swapan Rana, Paul Boes, and Jens Eisert
Phys. Rev. Lett. 119, 140402 - Published 5 October 2017
 mbed-state conversion problem for a single qubit

Outline

- A glance at QRT of coherence
- Mathematical framework for superposition principle
- Many models for free operations
- Structure of Incoherent operations
- General quantum operations
- Number of Kraus Operators and its importance
- Qubit incoherent channel
- Improved bound on \# Kraus operators for IO
- Exact number for SIO
- Achievable region and collapse of hierarchies
- Application to quantum thermodyanmics

Coherence at a glance

Many model of Coherence theory [Streltsov et al., Rev. Mod. Phys. (2017)]
$\left.\begin{array}{cccccc}\hline & 1 & 2 & 3 & 4 & 5 \\ \hline \text { MIO } & \text { (Åberg, 2006) } & \text { yes yes yes yes yes } \\ \text { IO } & \begin{array}{c}\text { (Baumgratz et al., 2014; Winter } \\ \text { and Yang, 2016) }\end{array} \\ \text { yes yes yes yes yes }\end{array}\right]$

Table II List of alternative frameworks of coherence with respect to our criteria 1-6 provided in the text.

Resource Theory of Quantum Coherence

IO theory of coherence [Baumgratz et al., PRL (2014)]

2Free (Incoherent) states: Diagonal states $\delta=\sum \delta_{i}|i\rangle\langle i|$, for a preferred/chosen o.n.b. $\{|i\rangle\}$. This is not a shortcoming!
2. Free (Incoherent) operations: Λ is incoherent iff there is a Kraus decomposition $\Lambda=\left\{K_{n}\right\}$ such that $K_{n} \delta K_{n}^{\dagger}$ is diagonal for all δ, n.

- Maximally coherent state: $\left|\Phi_{d}\right\rangle=\frac{1}{\sqrt{d}} \sum|i\rangle$.
- Any $\rho \in \mathscr{B}\left(\mathscr{H}^{d}\right)$ can be created from $\left|\Phi_{d}\right\rangle$:

$$
\left|\Phi_{d}\right\rangle \xrightarrow[\text { with certainty }]{\text { only } \Lambda \in \mathscr{I}} \rho
$$

- $\left|\Phi_{d}\right\rangle$ allows to implement arbitrary unitary $U \in S U(d)$.
- Existence of $\left|\Phi_{d}\right\rangle$ allows all kind of concepts related to manipulation of resource e.g., formation, cost, distillation etc.

Quantum operations

Quantum operations

Quantum operations

Quantum Operations on a single system

- Are described by Maps: $\rho^{\prime}=\varepsilon(\rho)$
- Two simplest examples: Unitary Evolution $\rho \mapsto U \rho U^{\dagger}$, Measurement $\rho \mapsto \rho_{m}:=K_{m} \rho K_{m}^{\dagger} / \operatorname{Tr}\left[K_{m} \rho K_{m}^{\dagger}\right]$.
- Quantum operations $=$ Quantum channels $=$ CPTP maps

$$
\begin{aligned}
\rho^{\prime} & =\varepsilon(\rho) \\
& =\operatorname{Tr}_{E}\left[U\left(\rho \otimes|0\rangle_{E}\langle 0|\right) U^{\dagger}\right] \\
& =\sum_{m}\langle m| U\left(\rho \otimes|0\rangle_{E}\langle 0|\right) U^{\dagger}|m\rangle \\
& =\sum_{m} K_{m} \rho K_{m}^{\dagger}, \quad K_{m}=\langle m| U|0\rangle \in \mathscr{B}\left(\mathscr{H}^{S}\right) .
\end{aligned}
$$

- K_{m} 's are known as Kraus operators, completely describe the action of the map/channel.
- The $\left\{K_{m}\right\}$ s is in general not unique: Two sets $\left\{K_{m}\right\}$ and $\left\{L_{n}\right\}$ generate the same channel iff

$$
K_{m}=\sum_{n} U_{m n} L_{n}, \quad \forall m, n
$$

Here $U_{m n}$ is a unitary matrix of order $\max \{m, n\}$. This follows essentially from the same result for ensemble:

$$
\left\{p_{i},\left|\psi_{i}\right\rangle\right\}=\left\{q_{j},\left|\phi_{j}\right\rangle\right\} \text { iff } \sqrt{p_{i}}\left|\psi_{i}\right\rangle=\sum_{j} U_{i j} \sqrt{q_{j}}\left|\phi_{j}\right\rangle
$$

- This implies: If $\rho \in \mathscr{B}\left(\mathscr{H}^{d}\right), \#\left(K_{m}\right) \leq d^{2}$.
- Thus a qubit channel can be described by at most 4 Kraus operators.
- However, we don't know which U will give us incoherent Λ.

Question: Characterize U and E so that the resulting $\left\{K_{n}\right\}$ is incoherent

- However, we don't know which U will give us incoherent Λ.

Question: Characterize U and E so that the resulting $\left\{K_{n}\right\}$ is incoherent

- Alternative way is to find the minimal description of Λ in terms of $\left\{K_{n}\right\}$.

Question: How many Kraus operators are needed to write $\Lambda_{d} \in \mathscr{I}$?

- However, we don't know which U will give us incoherent Λ.

Question: Characterize U and E so that the resulting $\left\{K_{n}\right\}$ is incoherent

- Alternative way is to find the minimal description of Λ in terms of $\left\{K_{n}\right\}$.

Question: How many Kraus operators are needed to write $\Lambda_{d} \in \mathscr{I}$?

- Important for simulating Λ.
- On qubit level, allows to visualize all possible $\Lambda[\rho]$.
- However, we don't know which U will give us incoherent Λ.

Question: Characterize U and E so that the resulting $\left\{K_{n}\right\}$ is incoherent

- Alternative way is to find the minimal description of Λ in terms of $\left\{K_{n}\right\}$.

Question: How many Kraus operators are needed to write $\Lambda_{d} \in \mathscr{I}$?

- Important for simulating Λ.
- On qubit level, allows to visualize all possible $\Lambda[\rho]$.
- We have only partial answers :
- General upper bounds for IO and SIO
- Exact results for qubits only

Upper bound from Choi-Jamiołkowski+Caratheodory

Upper bound on \#Kruas operators for IO channel

Any incoherent operation acting on a Hilbert (state) space of dimension d admits a decomposition with at most $d^{4}+1$ incoherent Kraus operators.

- Choi-Jamiołkowski isomorphism between a quantum operation Λ and the corresponding Choi state :

$$
\rho_{\Lambda}=(\Lambda \otimes \mathbb{1})\left(\Phi_{d}^{+}\right), \quad \Phi_{d}^{+}=d^{-1} \sum_{i, j=0}^{d-1}|i, i\rangle\langle j, j|, \operatorname{dim}\left(\Phi_{d}^{+}\right)=d^{2} .
$$

The rank of the Choi state is the Kraus rank, which is the smallest number of (not necessarily incoherent) Kraus operators.

- Consider the operator

$$
M=(K \otimes \mathbb{1}) \Phi_{d}^{+}\left(K^{\dagger} \otimes \mathbb{1}\right) \text { with any incoherent } K
$$

For any incoherent operation Λ, the corresponding Choi state ρ_{Λ} belongs to the convex hull of the operators M. Applying Caratheodory on M gives the upper bound.

Qubit IO channel

\#Kraus operators ≤ 5 for IO

Any qubit IO channel Λ admits a decomposition with at most 5 incoherent Kraus operators. A canonical choice of the operators is given by the set

$$
\left\{\left(\begin{array}{cc}
a_{1} & b_{1} \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
a_{2} & b_{2}
\end{array}\right),\left(\begin{array}{cc}
a_{3} & 0 \\
0 & b_{3}
\end{array}\right),\left(\begin{array}{cc}
0 & b_{4} \\
a_{4} & 0
\end{array}\right),\left(\begin{array}{cc}
a_{5} & 0 \\
0 & 0
\end{array}\right)\right\}
$$

where a_{i} can be chosen ≥ 0, while $b_{i} \in \mathbb{C}$. Moreover, it holds that $\sum_{i=1}^{5} a_{i}^{2}=\sum_{j=1}^{4}\left|b_{j}\right|^{2}=1$ and $a_{1} b_{1}+a_{2} b_{2}=0$.

- The incoherent condition implies that the Kraus operators can have at most non-zero element in a column.
- Group them into four categories:

$$
\begin{array}{rlrl}
K^{I} & =\left\{\left(\begin{array}{cc}
* & * \\
0 & 0
\end{array}\right)\right\}, & K^{I I}=\left\{\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right)\right\}, \\
K^{I I I}=\left\{\left(\begin{array}{ll}
0 & 0 \\
* & *
\end{array}\right)\right\}, & K^{I V}=\left\{\left(\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right)\right\} .
\end{array}
$$

- The unitary equivalence $L_{i}=\sum_{j} U_{i, j} K_{j}$ reduces them to eight

$$
\begin{aligned}
K^{I}=\left\{\left(\begin{array}{ll}
* & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
* & * \\
0 & 0
\end{array}\right)\right\}, & K^{I I}=\left\{\left(\begin{array}{ll}
* & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right)\right\}, \\
K^{I I I}=\left\{\left(\begin{array}{ll}
0 & 0 \\
* & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
* & *
\end{array}\right)\right\}, & K^{I V}=\left\{\left(\begin{array}{ll}
0 & 0 \\
* & 0
\end{array}\right),\left(\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right)\right\} .
\end{aligned}
$$

- Gathering altogether leads to six Kraus operators:

$$
\left\{\left(\begin{array}{ll}
* & * \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
* & *
\end{array}\right),\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right),\left(\begin{array}{ll}
0 & * \\
* & 0
\end{array}\right),\left(\begin{array}{ll}
* & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
* & 0
\end{array}\right)\right\} .
$$

- Among these consider the following 3 operators

$$
K_{1}=\left(\begin{array}{cc}
0 & 0 \\
a_{1} & b_{1}
\end{array}\right), K_{2}=\left(\begin{array}{cc}
a_{2} & 0 \\
0 & b_{2}
\end{array}\right), K_{3}=\left(\begin{array}{cc}
0 & 0 \\
a_{3} & 0
\end{array}\right) .
$$

The unitary

$$
U=\left(\begin{array}{ccc}
l a_{1}^{*} & 0 & l a_{3}^{*} \\
m b_{1}^{*}\left|a_{3}\right|^{2} & m\left(\left|a_{1}\right|^{2}+\left|a_{3}\right|^{2}\right) b_{2}^{*} & -m a_{3}^{*} b_{1}^{*} a_{1} \\
n a_{3} b_{2} & -n a_{3} b_{1} & -n a_{1} b_{2}
\end{array}\right)
$$

transforms those to

$$
L_{1}=\left(\begin{array}{cc}
0 & 0 \\
* & *
\end{array}\right), L_{2}=\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right), L_{3}=\left(\begin{array}{cc}
* & 0 \\
0 & 0
\end{array}\right)
$$

- Thus, altogether those reduces to the following five

$$
\left\{\left(\begin{array}{ll}
* & * \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
* & *
\end{array}\right),\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right),\left(\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right),\left(\begin{array}{cc}
* & 0 \\
0 & 0
\end{array}\right)\right\} .
$$

The canonical parameterization follows from the completeness relation $\sum K_{i}^{\dagger} \cdot K_{i}=1$.
transforms those to

$$
L_{1}=\left(\begin{array}{cc}
0 & 0 \\
* & *
\end{array}\right), L_{2}=\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right), L_{3}=\left(\begin{array}{cc}
* & 0 \\
0 & 0
\end{array}\right)
$$

- Thus, altogether those reduces to the following five

$$
\left\{\left(\begin{array}{ll}
* & * \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
* & *
\end{array}\right),\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right),\left(\begin{array}{cc}
0 & * \\
* & 0
\end{array}\right),\left(\begin{array}{cc}
* & 0 \\
0 & 0
\end{array}\right)\right\} .
$$

The canonical parameterization follows from the completeness relation $\sum K_{i}^{\dagger} \cdot K_{i}=1$.

Update: A generic qubit IO Λ can be decomposed into four Kraus operators. We are trying to prove that four is indeed the optimal number.

Exact number for qubit SIO is four

- A canonical form for any qubit SIO is given by

$$
\left\{\left(\begin{array}{cc}
a_{1} & 0 \\
0 & b_{1}
\end{array}\right),\left(\begin{array}{cc}
0 & b_{2} \\
a_{2} & 0
\end{array}\right),\left(\begin{array}{cc}
a_{3} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
a_{4} & 0
\end{array}\right)\right\},
$$

where $a_{i} \geq 0$ and $\sum_{i=1}^{4} a_{i}^{2}=\sum_{j=1}^{2}\left|b_{j}\right|^{2}=1$.

Exact number for qubit SIO is four

- A canonical form for any qubit SIO is given by

$$
\left\{\left(\begin{array}{cc}
a_{1} & 0 \\
0 & b_{1}
\end{array}\right),\left(\begin{array}{cc}
0 & b_{2} \\
a_{2} & 0
\end{array}\right),\left(\begin{array}{cc}
a_{3} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
a_{4} & 0
\end{array}\right)\right\}
$$

where $a_{i} \geq 0$ and $\sum_{i=1}^{4} a_{i}^{2}=\sum_{j=1}^{2}\left|b_{j}\right|^{2}=1$.

Bound for higher (d-) dimensional channels

- IO: $\# \leq d\left(d^{d}-1\right) /(d-1)$. Better than $d^{4}+1$ only for $d \leq 3$.
- SIO: $\# \leq \sum_{k=1}^{d} d!/(k-1)$!. Better than $d^{4}+1$ only for $d \leq 5$.
- (S)IO: \# $\geq d^{2}$ as the set of standard matrix units are linearly independent and forms an (S)IO.

Application: Achievable region for qubit

$\mathrm{SIO}=\mathrm{IO}=\mathrm{MIO}$

Figure: Achievable region for single-qubit SIO, IO, and MIO. Colored areas show the projection of the achievable region in the $x-z$ plane for initial Bloch vectors $(0.5,0,0.5)^{T}$ [blue], $(-0.8,0,-0.6)^{T}$ [green], and $(1,0,0)^{T}$ [red]. Note that the last two states are pure. The magenta line corresponds to the achievable region of an incoherent state with Bloch vector $(0,0,0.65)^{T}$.

Quantum Thermodynamics: Gibbs-preserving SIO

- Any $p|0\rangle\langle 0|+(1-p)|1\rangle\langle 1| \in \mathscr{I}$ can be interpreted as a Gibbs state $\tau=e^{-\beta H} / \operatorname{Tr}\left[e^{-\beta H}\right]$, for a suitable inverse temperature $\beta=\frac{1}{k T}$ and Hamiltonian H which is diagonal,

$$
p=\frac{e^{-\beta E_{0}}}{e^{-\beta E_{0}}+e^{-\beta E_{1}}} .
$$

- Thermal operations are Gibbs-preserving: $\Lambda[\tau]=\tau$, but can create coherence.

Figure: Achievable region [blue area] of single-qubit SIO which preserve the state $t=(0,0,1)$ [left figure] and $t=(0,0,-1)$ [right figure]. The initial state has the Bloch vector $r=(0.5,0,0.5)^{T}$ [blue dot], and the corresponding Bloch vector \boldsymbol{t} is shown as a green dot.

Conclusion and Outlook

- On qubit level, any SIO or a generic IO can be decomposed into four Kraus operators. This significantly reduces the number of parameters to simulate those channels, as well as to find the exact achievable regions for a given input states.
- The bound on number of Kraus operators derived from combinatorial arguments gives better result in small dimension only. There must be some further unitary reductions.
- We conjecture that every qubit IO could be decomposed into four Kraus operators.
- The restrictions on Kraus operators to define free operations is too strong which has lead to so many RTQCs. There is probably a deeper question involved: if the Krus operators are restricted to have a (sparse) pattern, then how to efficiently bound their number? How to physically implement those operations?

Acknowledgement

- John Templeton Foundation
- EU grants OSYRIS (ERC-2013-AdG Grant No. 339106), QUIC (H2020-FETPROACT-2014 No. 641122), SIQS (FP7-ICT-2011-9 No. 600645)
- Spanish MINECO grants FOQUS (FIS2013-46768-P)
- "Severo Ochoa" Programme (SEV-2015-0522)
- Generalitat de Catalunya grant 2014 SGR 874
- Fundació Privada Cellex

EXCELENCIA SEVERO OCHOA

